11. C. M. R. Moreira, D. V. Franco, R. Vicentini, L. G. Sousa, R. Venâncio, H. Zanin, L. M. Silva. Understanding intra-pore electrolyte resistances and distributed capacitances in carbon electrodes used in supercapacitors using a robust modeling process to separate the charge-storage occurring into macro-, meso-, and micro-pore structures, Journal of Energy Storage 101, 113924 (2024).
10. J. M. Gonçalves, G. T. M. Silva, H. Zanin. Ni-rich layered cathodes in sodium-ion batteries: perspectives or déjà vu?, Journal of Materials Chemistry A 12, 17756-17770 (2024).
9. N. G. Garcia, J. M. Gonçalves, C. Real, B. Freitas, J. G. R. Montoya, H. Zanin. Medium- and high-entropy materials as positive electrodes for sodium-ion batteries: Quo Vadis?, Energy Storage Materials 67, 103213 (2024).
8. H. R. Oliveira Filho, H. Zanin, R. S. Monteiro, M. H..P. Barbosa, R. F. Teófilo. High‑nickel cathodes for lithium-ion batteries: From synthesis to electricity, Journal of Energy Storage 82, 110536 (2024).
7. E. A. Santos, L. M. S. Barros, A. F. F. V. Peluso, I. Galantini, J. M. Gonçalves, R. Maciel F., H. Zanin. Trends in ionic liquids and quasi-solid-state electrolytes for Li-S batteries: A review on recent progress and future perspectives, Chemical Engineering Journal 493, 152429 (2024).
6. E. A. Santos, M. C. Policano, M.l J. Pinzón, I. Galantini, V. A. Gonçalves, F. C. B. Maia, L. J. A. Macedo, G. Doubek, R. G. Freitas, Hudson Zanin. Operando FTIR study on water additive in lithium-sulfur batteries to mitigate shuttle effect, Journal of Energy Chemistry 98, 702–713 (2024).
5. S. Mubarac, M. N. T. Silva, G. T. M. Silva, B. Freitas, J. M. Gonçalves, H. Zanin. Super Ni-rich and Co-poor LiNixCoyMn1-x-yO2, LiNixCoyAl1-x-yO2, and LiNixCoyMnzAl1-x-y-zO2 (x ≥ 0.85) based cathodes for lithium-ion batteries: A review on emerging trends, recent developments, and future perspectives, Journal of Energy Storage 96, 112312 (2024).
4. B. P. Sousa, T. C. Lourenço, C G. Anchieta, T. C. M. Nepel, R. M. Filho, J. L. F. Silva, G. Doubek. Direct Evidence of Reversible Changes in Electrolyte and its Interplay with LiO2 Intermediate in Li-O2 Batteries. Nano Micro Small Journal, 12, e230689 (2024).
3. B. P. Sousa, C. G. Anchieta, T. M. C. Nepel, A. R. Neale, L. J. Hardwick, R. M. Filho, G. Doubek. Exploring carbon electrode parameters in Li–O2 cells: Li2O2 and Li2CO3 formation, Journal of Materials Chemistry A (2024).
2. C. G. Anchieta, B. A. B. Francisco, J. P. O. Júlio, P. Trtik, A. Bonnin, G. Doubek, D. F. Sanchez. LiOH decomposition by NiO/ZrO2 in Li-Air battery: chemical imaging with operando synchrotron diffraction and correlative neutron/X-ray computed-tomography analysis, Small Methods (2024).
1. D. M. Josepetti, B. P. Sousa, S. A. J. Rodrigues, R. G. Freitas, G. Doubek. The initial stages of Li2O2 formation during oxygen reduction reaction in Li-O2 batteries: The significance of Li2O2 in charge-transfer reactions within devices. Journal of Energy Chemistry 88, 223-231 (2024).